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nonlinear nature of many of the conservation equations
and of the coupling between the boundary or interfaceAn implicit, pseudo-solid domain mapping technique is described

that facilitates finite element analysis of free and moving boundary shapes and the internal field variables.
problems. The technique is based on an implicit, full-Newton strat- Among the several computational approaches available
egy, free of restrictions on mesh structure; this leads to many advan- for FB or MB problems, the best choice depends on the
tages over existing domain mapping techniques. The fully coupled

particular set of field equations, boundary conditions, pa-approach using Newton’s method is particularly effective for prob-
rameter ranges of interest, and the range of domain topolo-lems with strong coupling between the internal bulk physics and

the governing physics at unknown free boundary locations. It is gies that need to be simulated. Each computational tech-
also useful when the distinguishing conditions which constrain the nique offers its own balance between efficiency, accuracy,
free boundary shape provide only an implicit dependence on the and robustness, all of which are desirable objectives for
boundary location. Unstructured meshes allow for efficient resolu-

any computational approach to analyzing FB or MB prob-tion of internal and boundary layers and other regions of strong
lems [1, 2].local variations in the solution and they also reduce the amount of

user interaction required to define a problem since the meshes may The most accurate techniques parameterize the free or
be generated automatically. The technique is readily applied to moving boundary as a mathematical curve (two dimen-
steady or transient problems in complex geometries of two and sions) or surface (three dimensions) in space, i.e., boundary
three dimensions. Examples are shown that include free and moving

parameterization techniques, so that the boundary condi-boundary problems from solidification and capillary hydrodynam-
tions may be applied precisely at an interface with a well-ics. Q 1996 Academic Press, Inc.

represented location, orientation, and curvature. More-
over, exact boundary parameterization makes possible the

1. INTRODUCTION solution of distinctly different field equations, according to
the governing physics in each region of the computational

Free and moving boundary problems in fluid dynamics, domain. Clearly, if accuracy of the boundary shape repre-
heat transfer, and other disciplines pose a challenge to sentation is an overriding concern, this precludes the use
computational techniques because the computational do- of interface-tracking schemes based on representing un-
main, or boundary shape, must be determined, together known FB or MB boundary shapes with partially filled
with any field variables internal to the domain. From an cells of finite thickness. Included in the latter approach are
industrial perspective, many materials processing issues techniques employing a ‘‘concentration function,’’ such as
involve free boundary (FB) or moving boundary (MB) the volume of fluid (VOF) approach [3], and schemes rely-
problems; solidification and capillary hydrodynamics, the ing on material marker particles, such as the marker-and-
focus of two of the example applications presented here, cell (MAC) technique [4]. These approaches trade a less
are important to the production and quality control of accurate boundary shape representation for a faster speed
metals, semiconductors, and various coatings. Robust, ac- of solution, especially for certain problems with discontinu-
curate, and efficient computational methods for locating ous evolution of domain topology.
free and moving boundaries, together with the internal The purpose of this research is to make a boundary-
physics, are essential for analysis and design of these pro- conforming domain mapping technique as robust as possi-
cesses. This is a particular challenge in the face of the ble. Here the term robust implies a technique that will

most often succeed in converging to the solution, if a solu-
tion exists. If there are circumstances where coaxing con-* This work was performed at Sandia National Laboratories for the

U.S. Department of Energy under Contract DE-AC04-94AL85000. vergence requires an analyst to modify the approach, then
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these modifications should be reasonably intuitive, such as proach, all subsequent techniques which employ the
pseudo-solid mesh movement concept do so in a decoupledstarting with an initial guess that resembles the final solu-

tion, or continuing in a parameter from one solution to manner: solution of the field equations is performed on
a mesh that is fixed; then satisfaction of the boundaryanother. Domain-mapping techniques are distinguished

from boundary-mapping techniques; in the latter case the conditions associated with the free boundary are used to
update the estimate of the mesh. If the boundary motionprimary focus is on parameterizing the shape of an un-

known free boundary with one less dimension than the is explicitly prescribed, or if the boundary evolution can
be tied to the field variables explicitly through a boundarycomputational domain. Thus, this discussion omits some

promising new techniques based on the level-set approach condition (see [9] and p. 19 of [10],) then updating the
shape of the domain through a simple mapping or more[5] that, too, respect a need for accuracy in representing

boundaries with strong coupling to curvature-dependent complicated mappings is possible [11–13].
Here, this pseudo-solid approach is taken a step furtherforces.

Frequently, the solution of various nonlinear partial dif- by embedding it in a full Newton–Raphson framework.
Full Newton iteration with an implicitly defined mappingferential equations in different parts of the computational

domain will be of as much interest as the shape of the has a history in the arena of finite element methods for
free and moving boundary problems; this history is brieflyboundary per se. A recurring challenge to computational

techniques addressing FB and MB problems is that of examined in Section 2. The pseudo-solid mesh motion con-
cept is then discussed in Section 3. There, in addition tokeeping an updated interior discretization of the domain

that is highly responsive to the boundary shape parameter- developing the underlying equations, the connection is
made between the internal mesh motion and the physicsization. The interior discretization is required to obtain

accurate representations of the field variables which, in of interest at the free or moving boundary. This connection
is made through the application of the distinguishing condi-turn, will affect the boundary shape through the boundary

conditions that apply there. The key step is to relate the tions, which is discussed in a general context in Section
3.3 and in the setting of specific applications in Section 5.free boundary position to the internal mesh discretization

with algebraic or differential equations. The approach ad- Section 4 contains a discussion of how the pseudo-solid
mesh motion equations and the equations governing thevocated in this work is to use two criteria to select the

equations: the first is that these equations place no restric- physics of interest are solved with the Galerkin/finite ele-
ment method. Newton–Raphson iteration is the key totions on the internal mesh structure, and the second is that

the equations fit within a Newton–Raphson solution solving the set of nonlinear algebraic equations resulting
from the finite element formulation, and the process offramework.

One such set of mesh-positioning equations meeting building the Jacobian matrix is aided through the use of
exact analytic expressions for each nonzero entry. As athese guidelines are those describing the deformation of an

elastic solid continuum under boundary loads. This pseudo- consequence and as the key innovation of this work, the
advantages of the Newton iteration scheme are obtainedsolid domain mapping procedure is suitable for a range of

FB and MB problems, where the topology of the initial for the pseudo-solid domain mapping technique, relaxing
the restrictions on grid structure that have hobbled previ-guess domain and the final domain are similar. The essen-

tial restriction is that the connectivity of the domain remain ous Newton-based techniques for FB and MB problems.
Section 5 demonstrates the Newton, pseudo-solid ap-the same; e.g., a simply-connected domain is not permitted

to evolve into a doubly-connected domain. So-called distin- proach with several example problems taken from coating
and polymer processing and melting and solidification. Itguishing conditions (DCs) [6] serve to constrain the posi-

tion or motion of the boundaries of the general deforming is shown that the full Newton iteration strategy adopted
here is a useful step forward in terms of robustness ofdomain. These constraints, applied to the pseudo-solid de-

formation, differ from boundary conditions that are con- computational techniques for free and moving boundary
problems.ventionally applied to solid materials in that they are not

expressed specifically in terms of the mesh displacement
or tractions, but rather in terms of whatever variables are 2. NEWTON’S METHOD FOR FB AND MB PROBLEMS
relevant to the FB or MB problem.

Lynch and coworkers were the first to exploit this The power of full Newton iteration has been demon-
strated repeatedly for a variety of different free and movingpseudo-solid concept. Lynch and O’Neill [7] used the static

equilibrium equations for an isotropic, elastic pseudo-solid boundary problems, including flow of viscous incompress-
ible fluids with significant surface tension [14], solidificationin two dimensions (the plane stress equations) to advance

the mesh configuration at each time step. Variations on with heat transfer and fluid flow [15], and directional solidi-
fication of binary alloys with a curvature-dependent melt-this basic approach may be found in the work of other

researchers (e.g., [8]). However, similar to Lynch’s ap- ing temperature [16]. A full Newton approach has been
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used for FB and MB problems in the context of finite boundary. Finally, residual equations for the boundary val-
ues of the mesh-displacement mapping include the condi-element methods [2], finite difference methods [17], and

boundary element methods [18]. These and other refer- tions distinguishing the surface positions in the FB or MB
problem. By distinguishing condition, a condition is meantences may be consulted for a discussion of the details

required to implement a full Newton iteration scheme for which is used to effectively constrain the unknown location
of the free or moving boundary. These conditions maydifferent discretization approaches. Here, only the essen-

tial steps for the full Newton finite element approach are depend on the physics of the problem at hand, or they
may be used to prescribe the position or motion of theintroduced so that a comparison may be made between

the pseudo-solid technique and two previous techniques: boundary (see Section 5 et seq.)
Newton’s method for finding roots to (2) relies on com-the method of spines [14] and the elliptic mesh generation

technique [19]. puting a Jacobian matrix that describes the sensitivity of
all equations with respect to all unknowns. Given an initialIn general, a mathematical description of a FB or MB

problem results in a set of coupled partial differential equa- guess u[0], a correction vector may be computed at each
Newton iteration, n, as the solution to a linear system andtions. Discretization of these equations leads to a set of

coupled nonlinear algebraic equations. A vector of un- added to the guess:
knowns, ordered so that the field variables associated with
the conservation equations appear first, followed by the J(u[n])d[n] 5 2R(u[n]), (3)
discretized mesh mapping variables, can be partitioned as

u[n11] 5 u[n] 1 d[n]. (4)

At each iteration, the current estimate of the full unknown
vector u[n] is used to calculate the Jacobian matrix and the

u 5 3
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4 . (1) residual vector.
It is illustrative to show the basic structure of the Jacob-

ian matrix. It includes 16 submatrices as follows:

Here, the superscripts c and d denote unknowns associated
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and interfaces that are denoted by the G subscript. Of
course, the actual ordering of the unknowns is unimpor-
tant, and the particular ordering may be chosen for compu-
tational efficiency and convenience.

3 4
Associated with the vector of unknowns is an equal-

length vector of independent residual equations which
The upper left two-by-two block of this matrix expressesarise from the discretization of the governing differential
the sensitivity of the field equations to corresponding un-equations, boundary conditions, and other general con-
knowns, e.g., a momentum equation with respect to a veloc-straints in the problem,
ity component. The lower right two-by-two submatrix ex-
presses the sensitivity of chosen mesh-position equations
with respect to all the position degrees of freedom, e.g.,
the coordinates of the mesh points. This submatrix system

R(u) 5 3
Rc

D

Rc
G

Rd
D

Rd
G

45 0. (2) may sometimes be solved separately, as the position de-
grees of freedom ud

D may be explicitly represented by the
mesh-position equations, as in the spine parameterization
technique described below. In that case, the only implicit
variables are those reflecting the free boundary positionResidual equations for interior values of the conserved

field variables and of the displacement equations will de- (i.e., the ud
G); the distinguishing conditions at the free or

moving boundaries are used to account for these variablespend on the particular choice of discretization technique.
The residual equations for the boundary values of the as a part of the matrix system.

The submatrices on the upper right express the sensitiv-conservation variables incorporate any Dirichlet or Neu-
mann conditions for the field variables that apply at the ity of the field equations with respect to mesh degrees of
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freedom; their size will depend on the choice of domain
mapping equations. Importantly, any spatial gradients in
these discretized residual equations need to be differenti-
ated with respect to the mesh displacement variables that
affect the location of the mesh via the mesh-position equa-
tions. The only other notable submatrix of the Jacobian is
the sensitivity of the boundary residual equations (i.e., the
distinguishing conditions, Rd

G) with respect to the field vari-
ables, uc

G and uc
D . This is the submatrix on the lower left.

These derivatives provide a means of coupling the overall
mesh mapping with the satisfaction of distinguishing condi-
tions.

Moreover, to assure strong (quadratic) convergence it
is necessary to compute the Jacobian matrix with analytical FIG. 1. A basic schematic of spine approaches to representing the

unknown shape of an interface. The underlying structure of the gridexpressions. Analytical evaluation requires an analytically
permits the boundary deformations to be propagated into the interiordifferentiable mapping between the mesh position equa-
of the computational domain. Sliding, pivoting, and curved spines aretions and the spatial discretization. For the finite element
extensions of this approach that can help when the interface deformation

method, advantage can be taken of the analytical represen- tends too close to multi-valuedness. Free boundary shape approximated
tation of the parametric mapping from the global to the using height function. Grid structure provides: (ud

D )ij 5 aj(ud
G )i .

local element coordinate system (see [20]). For the finite
difference method, some analytical expression for the in-
ternodal distances as functions of spatial variables must be and manual intervention is needed initially to fit a compli-
used [17]. Presented in the remainder of this section are two cated shape with spines; and, finally, the restriction of the
choices of mesh position equations that allow for analytical structured mesh can result in greater relative element dis-
Jacobian evaluation. tortion than if unstructured meshes were permitted.

The object then is to compute the Jacobian matrix (5) The limitation to single-valued height functions of the
and the residual equations (2). For the spine, elliptic, and spine techniques may be eliminated by resorting to domain
pseudo-solid mapping techniques discussed below, the only mappings based on the concept of elliptic mesh generation
difference is in the existence and form of the Rd

D compo- (EMG) [25, 26]. The mesh point locations are then deter-
nents of the residual vector; all remaining components of mined as constant coordinate surfaces in the reference
the residual vector are unchanged. The Jacobian matrix coordinate system (see Fig. 2). A full Newton finite element
constructed for the three different techniques will differ, implementation of EMG for free boundary problems was
however, since it will contain sensitivities to the different proposed in Ref. [19] and with variations in [27]. The EMG
kinds of position degrees of freedom in the solution vector approach is generally more flexible than spine techniques
(1). A succession of increasingly flexible forms for Rd

D oc- for solving free and moving boundary problems. Draw-
curs from spine to elliptic to pseudo-solid mapping tech- backs of the EMG approach are that it requires special
niques. handling for irregular domain shapes and that, to date,

Spine techniques are based on the concept of a height unstructured meshes have not been accommodated. How-
function, with interface heights above a base mathematical ever, once the conceptual hurdle is made to placing mesh
surface representing the unknowns [21]. The node point points onto the reference domain without restricting the
positions internal to the computational domain are ex- grid structure to lie upon constant coordinate surfaces, this
pressed as algebraic functions of spine height, relying upon leads naturally to a formulation that resembles the pseudo-
the structure of the grid to quickly identify the proper solid approach introduced next.
spine (see Fig. 1). The internal mesh point displacements
ud

D are removed from the unknown vector and the corre- 3. PSEUDO-SOLID APPROACH
sponding residual equations Rd

D are removed from the over-
all residual vector and used to determine ud

D from the given A pseudo-solid deforming in a Lagrangian fashion
makes for a natural mapping between topologically similarud

G as required. For the finite element method, full Newton
implementations of spine techniques with increasing so- domains. Essentially, for the particular case of a reversible

elastic deformation, the pseudo-solid approach is equiva-phistication have been used for a variety of free and moving
boundary problems [20, 14, 22, 23, 24]. Despite their inher- lent to using elliptic mesh generation equations to perform

the mapping with the condition of minimizing a strainent efficiency, spine techniques suffer from drawbacks: the
technique fails when the interface or boundary distortions energy functional. However, the pseudo-solid approach

does not necessarily require the use of a conservative con-seek a multi-valued height function; considerable expertise
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FIG. 2. The boundary-fitted elliptic grid generation approach for representing complex domain shapes can simulate more distortions of the
boundaries than spine-based approaches, but level sets of the orthogonal j-h coordinate system form boundaries that can create ‘‘special points’’
if the topology of the physical domain is described by an odd number of sides.

stitutive model for which a simple variational statement While the discrete approach is convenient for finite differ-
ence or finite volume computations, the approach takenmay be found.

One aspect of the implicit approach advocated here is here is to use the finite element weighted residual equa-
tions directly. The discrete spring and continuum solidthat the deformation field which maps an initial domain

into a deformed domain is defined on the deformed do- approaches result in identical equation systems for certain
situations (e.g., low order finite elements), but the conve-main. In one sense, this is done purely as a convenience;

since most of the interesting physics will be computed on nience of assembling finite element equations for the stress
in the pseudo-solid simultaneous to the assembly of thethe deformed domain, the mechanics of the pseudo-solid

might as well be viewed from the same convenient perspec- finite element equations for the conservation equations of
interest make the finite element weighted approrach moretive. Thus, the instantaneous configuration of a deformed

pseudo-solid is used for interpolating all variables, includ- appealing and convenient in the present context.
Notably, every boundary of the pseudo-solid is consid-ing the deformation field that was required to bring the

initial configuration to the deformed configuration. In es- ered to be a moving or free boundary, either under pre-
scribed geometry, kinematics, or under constraints or kine-sence, the term ‘‘implicit’’ refers to the way the free bound-

ary problem is cast. The field variables and the deformation matics governed by the physical problem of interest. Thus,
even if the boundary stays at a fixed spatial location, it isof the computational domain are all unknown a priori;

they are determined as functions on the deformed domain. useful to formulate the problem so that the pseudo-solid,
while conforming to a fixed boundary, may slide along it.In the development here, the choice is to treat the dis-

placement field as mapping a continuum region, potentially The following two sections describe the actual full New-
ton pseudo-solid approach for solving free and movingmaking the technique amenable to other discretization

schemes besides the finite element method that is em- boundary problems. First, the presentation focuses on the
fully time dependent ALE formulation, with the emphasisployed here (Section 4). Discrete models of nodes con-

nected by springs with extensional and torsional stiffnesses on the mapping. Second, pertinent governing equations
for the pseudo-solid and for sample problems with incom-have been used successfully for mesh deformation, particu-

larly in the context of adaptive methods (e.g., [28–30]). pressible flow and heat transfer are developed. Third, the
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specific assumptions are discussed that permit solution of ping depends on both the initial configuration and the final
configuration.steady free boundary problems directly, i.e., without

marching a transient solution continuously through time to As a consequence of the field equations, boundary condi-
tions, distinguishing conditions, and other possible con-a steady state. Finally, the significance of the distinguishing

conditions to the pseudo-solid approach is discussed along straining conditions, the solution of the free boundary
problem will provide a displacement field that maps thewith specifics concerning their application.
initial domain Dinitial to the final domain Dfinal , and a mate-
rial point of the pseudo-solid will be displaced to a new po-3.1. ALE Formulation
sition,

The pseudo-solid mapping approach developed below
actually belongs to the category of arbitrary Lagrangian xP 5 Xfinal 5 Xinitial 1 d. (6)
Eulerian (ALE) techniques, insofar as a reference system
is chosen to conform to the Lagrangian deformations of A central objective of the FB or MB problem is, therefore,
the pseudo-solid. The reference frame is not necessarily the determination of the mapping d.
either Lagrangian or Eulerian with respect to the fluid Equation (6) is essentially a Lagrangian description of
motion, but arbitrary. The ALE approach has roots in the pseudo-solid material. By augmenting the free bound-
the solid mechanics community where large deformation ary problem of interest with an additional problem of de-
problems such as rolling and extrusion have created inter- termining the deformation of the pseudo-solid, the contin-
est in techniques that provide a general reference frame uum may be utilized to embed the grid points associated
for casting the conservation equations that was not prone with the discretized problem. A careful distinction is made
to the severe mesh deformations of a strictly Lagrangian between the pseudo-solid material that spans the computa-
approach. Large material deformations are endemic to tional domain and whatever physical material (if any) that
problems from fluid dynamics as well, and ALE techniques spans the same. Indeed, this technique for mesh deforma-
have renewed interest for free and moving boundary prob- tion may be applied to such problems as electrostatics,
lems where deforming material surfaces are involved. From with potential surfaces bounding a region of vacuum being
its origins [31], the ALE approach has been developed identified as free surfaces. The pseudo-solid material is
by a number of researchers, particularly within the finite only an artifice carried for convenience in moving a compu-
element community (e.g., [32, 33, 8]). tational mesh. And while the deformation of the pseudo-

The general idea of an ALE formulation is that the solid is viewed from a Lagrangian standpoint, the real
material and the mesh both move with some velocity rela- materials often will be best viewed from an Eulerian stand-
tive to a referential coordinate system. This alters the con- point. The mapping between the two is performed as
servation equations so that two velocities generally appear needed using (6).
in the governing equations, that of the material and that The required displacement field d need only be regular
of the mesh. From the standpoint of the pseudo-solid, or invertible, but it is not necessarily restricted to small
the mesh will move in a Lagrangian or material fashion, values. This feature is exploited in the solution of MB and
following some deformation of the pseudo-solid from an FB problems where the initial guess of the domain shape
initial condition to a final configuration that solves a FB may require large pseudo-solid strains to achieve the solu-
problem at each time step. tion after a few Newton iterations. The time-dependent

Given an initial guess of the domain shape, any spatial formulation for transient problems with moving bound-
coordinates may be expressed as a function of the mate- aries places no a priori restrictions on the size of d at each
rial coordinates of the pseudo-solid spanning the domain time plane. However, the accuracy and stability of the
Dinitial, viz., transient algorithm may still be affected by the need to

construct good approximations for the pseudo-solid veloc-
xP 5 Xinitial ity, dd/dt, which figures into the conservation laws through

an ALE term [34]. For FB problems, the full motion of
the pseudo-solid to its deformed state is not sought, rather,as shown in Fig. 3, where xP denotes the current spatial

coordinates of a point P in the pseudo-solid continuum. it is only the final displacement that is of interest.
A key feature of the implicit approach to the problemThe initial configuration of the pseudo-solid is Xinitial , and

at each time plane it is assumed to be given and to be is that the displacement d is regarded as a function of x
on the deformed domain, i.e.,topologically similar to the final deformed configuration.

Reference shall be made to a fixed initial configuration of
the pseudo-solid during the course of the Newton iteration Find d(x) for x [ Dfinal . (7)
since a map is sought from a specific initial configuration
to a specific final deformed configuration. That is, the map- Thus, the mapping back to the original configuration is
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FIG. 3. Pseudo-solid approach. The initial domain undergoes a displacement mapping given by d, to become the final domain. The implicit
nature of the mapping is that d is regarded as a function of position on the final domain (or whatever the current best guess is for the final domain
during the Newton iteration).

closely tied to the current configuration. An inherent fea- at fixed points of the pseudo-solid to exhibit temporal
variations due to this relative motion. This effect is incorpo-ture in using the implicit mapping of (7) is that d(x) must

be determined iteratively because the displacement map- rated into the governing conservation equations using extra
terms to account for the pseudo-solid velocity effect onping d required to achieve the solution of MB and FB

problems is likely to be nonlinear. Newton’s method is an the time-derivative. The solutions to the transient problem
will therefore have nonzero pseudo-solid velocity, i.e.,effective means of solving for this kind of implicitly posed

nonlinear problem.
For the most part, since the pseudo-solid is merely an

artifice to embody the mesh, almost any constitutive model ­d
­t

? 0.
would suffice. Simple models that are not dependent upon
the path or history of deformation are preferable, simply
for the sake of convenience. The only objective to be met
in the choice of constitutive model is to minimize mesh A key difference between the steady and transient for-

mulations is that the former permits large unrestricteddistortion. A small strain elastic model is chosen here and
has been used successfully for a range of FB and MB displacements of the pseudo-solid, while the transient for-

mulation requires d(x, t) to be a continuous function ofproblems. Recent work has indicated more sophisticated
nonlinear constitutive models would make better choices time as well as of space. Temporal continuity is required

so that the velocity of the pseudo-solid is well definedto minimize mesh distortion; this will be the subject of
future presentations. and can be used as needed to evaluate ALE terms of the

conservation equations. No such restriction applies to theFor transient problems, an account must be made of the
evolution of field variables and the shape of the computa- Newton iterates on d for FB problems, although the ro-

bustness and the global convergence properties of the New-tional domain. If there are spatial gradients of any field
variables, then the motion of the pseudo-solid through the ton iteration might be affected by the severity of the defor-

mation.computational domain will cause field variables sampled
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3.2. Governing Equations density yields a static-equilibrium equation for the pseudo-
solid response:

The differential equations which govern the internal mo-
tion of the pseudo-solid material are taken directly from

0 5 = ? S. (9)the theory of continuum mechanics. Begin with Cauchy’s
equation for the balance of forces internally within the

A simple isotropic linear elastic constitutive equationpseudo-solid material:
(Hooke’s Law) for the pseudo-solid is

rm
­d

.

­t
5 = ? S 1 rm fm . (8) S 5 l tr(E) I 1 2 eE, (10)

where l and e are Lamé coefficients, I is the identity tensor,
Here, rm is the density of the pseudo-solid, S is the Cauchy E is the Eulerian infinitesimal strain tensor,
stress tensor, and fm is the body force per unit volume
acting upon the pseudo-solid in the interior. Note that (8)

E 5 !s [=d 1 =d†], (11)does not contain any reference velocity for the mesh due
to the choice of a material frame for the pseudo-solid.

and tr(E) is the trace of the strain tensor. The gradientsHere the body force fm is zero. Certainly, it is possible
of the displacement d are in terms of spatial coordinates.that some kind of solution adaptivity could be built-in
For example, in Cartesian coordinates,through a specially prepared body force term, which could

be used to focus the mesh towards regions of high solution
curvature. This presentation defers this intriguing pursuit (=d)ij 5

­dj

­xi

.
of adaptivity and focuses on conforming the pseudo-solid
at boundaries and interfaces only. Without body forces,

The Lamé coefficients express relative shear and exten-the internal motion of the pseudo-solid will be governed
sional moduli of the pseudo-solid. These values may beentirely by the constitutive equation and by whatever de-
chosen to help retain an optimal mesh during deformation.formations or stresses that are exerted on the boundaries
Arbitrarily, the choice ofor internal interfaces.

Another arbitrary choice in this implementation is to
e 5 l 5 1make the pseudo-solid inertialess, i.e.,

is made, corresponding to a Poisson ratio n 5 0.25, thusrm 5 0.
avoiding the degenerate case of an incompressible compu-
tational domain (n 5 0.5).Such a choice is not mandatory, of course. For steady, free-

Continuum equations for a sample range of applicationsboundary problems the choice is irrelevant since all time-
are put forth to augment the equations developed abovedependent terms are neglected, includng the acceleration
for the deformation of the pseudo-solid. Our interest hasterm in (8) and the static mechanical equilibrium equations
been focused mainly on problems in transport phenomena,are solved instead.
specifically the flow of viscous incompressible fluids withZero density of the pseudo-solid has other conse-
free surfaces, potentially coupled with heat and mass trans-quences. At each time plane of a MB problem, which is
fer. As mentioned above, there are potentially a greatsolved like a FB problem, the mesh is required to respond
many other free and moving boundary problems thatinstantaneously. The constraint on mesh motion is degen-
would benefit from the full-Newton pseudo-solid ap-erate in the sense that no time derivatives of d appear in
proach, certainly many more applications than the limitedthe evolution equation for the mesh itself, and an elliptic
selection shown here.equation governs the mesh displacement at each time step.

For an incompressible fluid, overall conservation of massThe added expense of an implicit solution of these equa-
is written simply astions averts any potential added expense associated with

acoustic transients, where the hyperbolic equations for
= ? v 5 0, (12)rm ? 0 are solved instead. Nevertheless, despite its omis-

sion from the mesh stress equations, the time derivative
where v is the fluid velocity with respect to fixed spatialof the displacement does appear in other equations and
coordinates. Momentum conservation for the fluid iscare must be taken to accurately determine d

.
as the mesh

writtendeforms through the computational domain for MB
problems.

Applying the assumptions of zero body force and zero r (v* 1 v ? =v) 5 = ? s 1 rg, (13)
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where r is the fluid density, and v* is the time derivative 3.3. Distinguishing Conditions
of the velocity field including the ALE velocity of the

The purpose of this section is to describe the details
mesh, s is the total Cauchy stress of the fluid, and g is the

of the boundary conditions applied to the pseudo-solid,
body force (per unit mass) acting on the fluid. The advected

including those which connect its motion to the FB or
derivative is defined for any conserved quantity c as

MB problem of interest, i.e., the distinguishing conditions
(DCs). Unlike the essential conditions on displacement or
natural conditions on traction applied at the surface of thec

*
5

­c

­t
2 d

.
? =c, (14)

pseudo-solid, DCs are used to define the position of the
free boundary implicitly.

The kinds of DCs available are manifold and dependwhere the velocity of the mesh is d
.
. This derivative is

on the particular kind of FB or MB problem to be solved.akin to the material derivative that is used in differential
Section 5 is merely a sampling of the different kinds ofconservation statements; it incorporates into the time rate
problems and DCs that can be encountered. Indeed, thereof change that contribution resulting from the reference
is often a choice of whether to use a particular boundarypseudo-solid moving through a gradient of a field. Gener-
or interface constraint as a boundary condition or as aally, the time derivatives like v* will be zero for free bound-
distinguishing condition. Within the context of a Newton–ary problems and nonzero for moving boundary problems.
Raphson iteration scheme, however, the choice of DC isFor incompressible flows it is convenient to decompose
not nearly so critical as it is when a lower-order iterationthe fluid stress tensor into an isotropic pressure and a
scheme is employed.deviatoric stress,

There is little difficulty in enforcing such DCs for one-
dimensional FB problems; the one ‘‘extra’’ boundary con-s 5 2PI 1 t,
dition arising from the FB problem is used as the one
constraint for the one component of displacement that

where the deviatoric stress might typically be related to is permissible.
the velocity field through Newton’s Law of Viscosity. In two or three dimensions, however, mesh displacement

Energy conservation for the incompressible fluid is is a vector quantity that offers two or more displacement
directions as degrees of freedom at boundaries or internal

rCp (T
*

1 v ? =T) 5 2= ? q 1 h, (15) interfaces. Correspondingly, the mesh stress equation re-
quires just as many independent boundary conditions. The
FB problem will typically provide but one ‘‘extra’’ condi-where T is the temperature, Cp is the heat capacity, q is
tion, leaving open the question of what should be done tothe diffusive heat flux, and h is a volumetric heat source.
provide the full complement of boundary conditions uponAgain, advective terms are included to account for both
the displacement vector field for multi-dimensional prob-the motion of the fluid relative to the coordinate system (v)
lems. There is probably more than one answer to thisand for the motion of the mesh relative to the coordinate
question; one possible answer is described next that pro-system, d

.
. In the applications below, Fourier’s law is used

vides compatibility with the Newton–Raphson require-to represent diffusive heat flux, i.e.,
ment that all equations and boundary constraints of the
system possess well-defined derivatives (preferably, con-q 5 2k=T. (16)
tinuous derivatives).

Compatibility with the Newton–Raphson method is not
Note the deliberate segregation of the advective terms

a trivial issue for free and moving boundary problems.
in Eqs. (13) and (15). The ALE mesh velocity is lumped

Seemingly simple solutions to choosing the distinguished
together with the time derivative. This separation is done

component of displacement based on
to ease the solution of steady FB problems where all time
derivative terms including the velocity of the pseudo-solid

Choose da such that n ? ea 5 max
b

(n ? eb ), (17)
is zero, but the velocity of the fluid may be nonzero.

Other conservation equations may also be of interest,
such as those for species conservation or for deformation where n is the unit normal to the surface and the eb are

unit vectors in the coordinate system, do not suffice. Theof real solid materials. There is no inherent difficulty in
extending the pseudo-solid domain mapping algorithm to reason is that (17) is not generally differentiable, since a

deformable boundary or internal interface may distort tothese and other classes of problems. Moreover, with the
exception of the ‘‘extra’’ boundary conditions, which are where a different coordinate direction abruptly becomes

the preferred distinguished component.used to distinguish the free surface motion, the usual
boundary conditions require no extraordinary treatment. A solution to this dilemma is to rotate the components of
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the governing equations locally into normal and tangential
components so the normal component may always be iden-
tified along a smooth boundary and used for the imposition
of distinguishing conditions. Then, a Neumann condition
may be applied to the tangential component(s) of the trac-
tion so that the pseudo-solid (and, hence, the mesh) may
slide freely in those directions. For boundaries that nor-
mally would be considered fixed, or those undergoing pre-
scribed kinematics, it is advantageous to consider those,
too, as free boundaries, but under a different kind of distin-
guishing condition to constrain their freedom. Permitting
tangential sliding at all external boundaries is an advan-
tage, since it provides for greater overall flexibility with
less internal distortion in conforming to different shapes.
To be compatible with the Newton–Raphson iteration pro-
cedure, however, the rotation of the equations into a local
coordinate system must be performed using a differen-
tiable transformation.

Of course there are special points, like corners, which
are the junctions or intersections of two or more bound-
aries and at which it is mathematically impossible to impose
a tangential-traction-free constraint (assuming the curves
do not join smoothly at the intersections). In the case of

FIG. 4. Smooth portions of the boundary of the pseudo-solid fillingcorners, multiple distinct constraints apply at the intersec-
the computational domain have local coordinate systems affixed thattion, and the point is located simply using the correspond-
follow the unit normals and tangents at the boundary.ing set of distinguishing conditions.

Once the rotation of the boundary traction vector equa-
tion is accomplished, the normal component is replaced

pseudo-solid in the reference coordinate system areby the distinguishing condition (i.e., an essential boundary
given ascondition) for the free boundary, acting much like a poten-

tial well which drives the boundary normally to satisfy
the DC. The tangential component of the traction vector

f 5Ff1

f2
G , (18)equation is used to disallow tangential tractions at external

boundaries, or to preserve any tangential stress balance at
internal interfaces. The constraint at internal interfaces is where the subscripts denote each of the independent coor-
needed to preserve the mesh conformity that would be dinate directions and (e1 , e2 ) denote the unit vectors in
lost if internal slippage were permitted. those directions. Tractions expressed by (18) are rotated

For specificity and simplicity, consider the two-dimen- into a local coordinate system based on a normal/tangential
sional system in Fig. 4. A two-dimensional region will have basis along the boundary, viz.,
boundaries and internal interfaces that are comprised of
piecewise smooth curves that are essentially one-dimen-
sional objects, in that they may be parameterized as a f9 5Ffn

ft
G5F(n ? e1 ) (n ? e2 )

(t ? e1 ) (t ? e2 )GFf1

f2
G ,

vector-valued function of one real variable (e.g., the arc
length along the curve). Along each of these smooth curves
is the need to describe unit normal and tangent vectors, where the unit vectors on the boundary, both the normal
with a consistent convention for direction (such as out- n and the tangent t, are differentiable functions of the
ward) that must be decided upon in advance, so that a boundary position of the pseudo-solid. If the current esti-
continuous representation of n(s) and t(s) may be con- mate of a smooth boundary curve is given as
structed.

Keeping with a two-dimensional prototype, the mesh
stress vector at the boundary is decomposed into its spatial x(s) 5Fx1(s)

x2(s)G , 0 , s , 1,
coordinate directions and then reconstructed according to
the local boundary orientation. If the components of the
boundary traction vector acting on the surface of the then expressions for normal and tangential unit vectors are
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all, this pseudo-solid provides a framework for a discretiza-
t(s) 5

x
.

1e1 1 x
.

2e2

Ïx
. 2

1 1 x
. 2

2

, (19) tion that is conforming everywhere.
Three-dimensional extensions of these ideas are not dif-

ficult in principle, although practically the implementationn(s) 5 2
x
.

1e1 1 x
.

2e2

Ïx
. 2

1 1 x
. 2

2

, (20)
may be more tedious, since two independent tangent vec-
tors are required to describe a bounding surface and a
means of generating such tangent vectors that are globallywhere x

.
1 5 dx/dx, etc. The sign of the unit vectors is

arbitrary, except insofar as the overall consistency of the consistent and smoothly varying along the surface are re-
quired for the Newton implementation. Also, three-dimen-convention, particularly for the case of deformable internal

interfaces in a FB or MB problem, or where any two sional regions may have bounding ‘‘seams,’’ space curves
at which two surfaces intersect. In a general scheme, distin-smooth curves splice together smoothly. The latter form

of consistency is pertinent for the finite element and other guishing conditions must be applied to two out of three
components of the mesh stress vector to position the pointsmethods that rely upon small subdomains (elements or

cells) that adjoin one another at a boundary. onto the seam, but in such a manner that the tangential
stress of the mesh vanishes and permits nodes on the seamFor constraint equations distributed on a boundary, the

equation associated with the normal component of the to slide tangentially along the curve. Special points that
are the intersection of three independent distinguishingtraction vector fn is replaced with a desired distinguish-

ing condition, conditions may be applied to all three components of the
mesh force balance, without the intermediate step of local
rotation. Just as for the case of two-dimensional FB andrDC,k(u) 5 0, (21)
MB problems, in three dimensions the consideration of
higher order singularities, such as tangential intersectionswhere u is the vector of unknowns for the FB or MB
of boundaries and free interfaces, is ignored in this presen-problem and the k subscript is used to identify the surface
tation.and the DC that applies. A distinguishing condition should

be differentiable, but it is otherwise unburdened by any
4. FINITE ELEMENT FORMULATIONrestrictions. In particular, Eq. (21) need not have any ex-

plicit dependence on the pseudo-solid position d, or for
Discussion of the discretization procedure has been post-MB problems, on d

.
. The examples in Section 5 make this

poned to this late stage to emphasize that the techniqueimportant feature clear. Effectively, the condition (21) acts
need not be restricted to finite element formulations. Whilein the capacity of a normal traction boundary condition
the FE method offers many advantages and is chosen towhich vanishes only insofar as the DC is obeyed.
solve the continuum equations in this presentation, otherThe process of replacing the normal component of the
discretization techniques might be used instead. Indeed,pseudo-solid traction vector with a distinguishing condition
the only apparent restriction is that of differentiability,occurs both on exterior boundaries of the computational
which is required for an analytical implementation of New-domain and on interior interfaces that are deformable ac-
ton’s method, and many other spatial discretization tech-cording to the FB or MB problem. All boundaries that are
niques (finite difference, spectral) might serve as well.free or deformable will have distinguishing conditions that

The governing conservation equations are discretizedapply, even if the conditions are no more than simple
using the Galerkin finite element method (GFEM), includ-geometric descriptions of the boundary (the most basic
ing (9), (12), (13), and (15). The procedure is essentiallydistinguishing condition).
a restatement of the problem in weak form using theThe constraint equation associated with the tangential
method of weighted residuals [35, 36]. To avoid excessivecomponent of the traction vector of the pseudo-solid on
discretization error all second-order derivatives are inte-exterior boundaries vanishes, i.e.,
grated by parts using the divergence theorem.

The pseudo-solid stress is governed by a vector equation
ft 5 0, with each component denoted by the subscript a:

while at interior interfaces the tangential traction is con- 0 5 Rd
i,a (22)

tinuous,
5 (w(d)

i , ea ? (= ? S)) (23)

ftuI 2 ftuII 5 0.
5 2 E

D
=((w(d)

i ea ) : S dV 1 E
G

w(d)
i nea : S dS) (24)

The pseudo-solid is assumed to be continuous and not to
admit any internal discontinuities, slip, or fractures. Over- for the i, a component of the mesh stress residual. The



94 SACKINGER, SCHUNK, AND RAO

unit vectors of the coordinate system are denoted using the unit element from the unit element to each of the
elements in the mesh (the uppercase distinguishes basisea . The index i refers to each of the independent basis

functions w, and the (d) superscript refers to basis functions functions on the unit element from those on elements in
the actual domain),chosen to represent the displacement field. Orthogonality

is enforced using an inner product based on the integral
over the computational domain, xa 5 O

k
[X initial

ak 1 dak ] W (d)
k (j), (28)

(? ? ?) 5 E
D

? ? ? dV.
where the displacement for each node is added to the
initial position of the node embedded in the pseudo-solid

The weak forms are often reduced using the divergence material. The index k cycles over the nontrivial contribu-
theorem (e.g., (24)) to integrands with lower order deriva- tions from basis functions for the element in question. Here
tives and augmented with boundary flux data included of j is the vector of local isoparametric coordinates.
the form The only remaining issue concerns the Newton imple-

mentation, which requires that the derivatives of the
(? ? ?)G 5 E

G
? ? ? dS. weighted residual integrals expressed by Eqs. (25)–(27)

be taken with respect to the field variables. Most of the
derivatives that comprise the Jacobian matrix entries mayA weighted residual form of the continuity equation for
be determined in a straightforward manner. However,an incompressible fluid is
since the mesh is deformable, there is the additional com-
plexity of having to differentiate the residual equations0 5 Rc

i ,
(25) with respect to the displacement field, i.e., all of the dai .

5 (w(P)
i , = ? v). The details of this step have been developed previously

(cf., [14]) and are reviewed here.
Conservation of momentum for the fluid, another vector Contributions to the Jacobian matrix resembling those

equation, has a discretized form for a fixed grid problem are developed in a standard fash-
ion. For example, the thermal diffusion term contributes

0 5 R m
i,a

5 (w(m)
i , ea ? [2r(v* 1 v ? =v) 1 = ? s 1 rg]),

(26)
­Re

i

­Tj
5 ? ? ? 1

­(=w(e)
i ? (2k=T))

­Tj
1 ? ? ?

5 (w(m)
i , ea ? [2r(v* 1 v ? =v) 1 rg])

5 ? ? ? 1 (=w(e)
i ? (2k=w(e)

j )) 1 ? ? ? .
2 (=(w(m)

i ea ) : s) 1 (nea : s)G ,

Thus, entries comprising the ­Rc
D/­uc

D<G submatrices of the
and the weighted residual equation for the conservation global Jacobian are readily determined.
of energy for the fluid is The sensitivity of the discretized conservation equations

with respect to mesh displacement unknowns is more in-
0 5 Re

i volved. Since the elements are deformable, the integration
limits include displacement variables, and this contribution5 (w(e)

i , [2rCp(T
*

1 v ? =T) 1 = ? q 1 h]),
(27) to the global Jacobian matrix must be realized. First, the

5 (w(e)
i , [2rCp(T

*
1 v ? =T) 1 h]) element integrals are transformed to a fixed unit ele-

ment, viz.,
2 (=w(e)

i ? (2k=T)) 1 (n ? ((2k=T)))G .

The temperature, fluid velocity, and displacement of the E
element e

? ? ? dV 5 E
unit element

? ? ? uJeu dv,
pseudo-solid are represented using isoparametric basis
functions. The pressure is represented with a lower order

where uJeu is the determinant of the elemental Jacobianinterpolant so as to satisfy the LBB constraint (see, e.g.,
matrix for the transformation from the unit element to any[37]).
particular element (using (28)). The elemental JacobianThe representation of the different field variables in
matrix is constructed asterms of finite element basis functions is based on standard

well-known procedures; the most notable feature, insofar
as this development is concerned, is the mapping of spatial Je,ab 5

­xb

­ja

. (29)
coordinates using the finite basis functions W defined on
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A first vital contribution to the global Jacobian’s mechanics, the gradient of the mesh displacement will in-
clude sensitivity to the mesh displacement in two ways:­Rc

D/­ud
D<G submatrix terms will be made by portions re-

sulting from the transformation to the unit element. That
is, terms from ­=dc

­daj
5

­J21
e ? =j dc

­daj

,

­uJeu
­daj

.
5

­J21
e

­da,j
? =jdc 1 dcaJ21

e ? =j dc .

Second, every portion of the integrands in the weak form These sensitivities are used in the calculation of the
residual equations that are explicit functions of position ­Rd

D/­ud
D<G terms of the global Jacobian matrix.

must be differentiated with respect to mesh displacement The only interaction of the pseudo-solid deformation
to provide contributions to ­Rc

D/­ud
D<G . For example, a heat with the field variables of the conservation equations oc-

source term that is a function of position, h(x), would con- curs at the boundaries. That is, the ­Rd
D/­uc

D<G terms of (5)
tribute are zero. Distinguishing conditions provide nonzero contri-

butions for the ­Rd
G /­uc

D<G and the ­Rd
G /­ud

D<G submatrices.
The specific contributions depend on the form of the partic-­(w(e)

i , h(x))
­daj

5 Sw(e)
i ,

­h(x)
­xa

w(d)
j D1 Sw(e)

i , h(x)
­uJeu
­daj

D , ular DC; different kinds of DCs are illustrated in the
next section.

to the global Jacobian matrix. Any terms utilizing the nor-
5. EXAMPLE PROBLEMS

mal and tangent vectors (cf. (19) and (20)) at a boundary
will contribute in a similar way, since they depend upon The examples in this section were chosen to demonstrate
the current estimate of the boundary shape. several features and advantages of the Newton pseudo-

A third kind of contribution to ­Rc
D/­ud

D<G is based upon solid approach. These examples make plain the utility of
the implicit dependence of the spatial gradient operators unstructured grids, particularly for resolving boundary lay-
upon the deformable mesh. Terms like ers and singular field variable behavior at contact points.

All calculations were performed on relatively coarse
meshes and are meant only to illustrate the technique. One­=w(e)

i

­daj
(30)

example drawn from a solidification processing application
is used to demonstrate the strong, quadratic convergence

provide nontrivial contributions that may be determined inherent to Newton’s method. This feature not only makes
using (28) and the chain rule. The elemental Jacobian steady state analysis more practical for these problems,
transforms gradient terms between elements in the compu- but it helps make the transient algorithm more efficient
tational domain and the unit element, and opens the possibility of conducting computer-aided

nonlinear analysis [38, 2]. Also demonstrated is a transient
coating startup problem showing that large free surface­( )

­ji
5 O

k

­xk

­ji

­( )
­xk

,
deformations may be determined with the technique de-
scribed herein, without severe mesh distortion or mesh-
line crossing.5 O

k
Je,ik

­( )
­xk

.
In all cases the original mesh topology was generated

with the paving algorithm [39]. The meshes are all four- or
nine-node isoparametric quadrilaterals in two dimensionsWritten more compactly, this transformation may be in-
and eight-node isoparametric hexahedral bricks in threeverted while the elemental Jacobian is nonsingular
dimensions. It is important to point out that the technique
being demonstrated here is completely independent of the=j 5 Je ? =
mesh generator chosen, and the technique is in no way

= 5 J21
e ? =j . restricted to quadrilateral or hexahedral elements. By and

large, the mesh selection was arbitrary; the first convenient
Thus, terms such as (30) are determined by evaluating mesh was used and the results obtained do not depend

upon these choices, apart from the standard approximation
errors associated with the finite element method. The­J21

e

­daj

.
coarse meshes used here for illustration purposes would
naturally be refined for greater accuracy in solving ac-
tual problems.Using the small strain formulation for the pseudo-solid
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In all examples the Lamé coefficients are taken as l 5
e 5 1 (see Eq. (11)), for which case Poisson’s ratio was n 5
0.25. The resulting mesh integrity in the example problems
appeared to be fairly independent of the choice of the
Lamé coefficients, so long as Poisson’s ratio remained dif-
ferent from 0.5 (by at least 10%.)

5.1. Box to Circle

This first example is somewhat trivial; it is purely a geo-
metric problem; i.e., the only equations solved in the inte-
rior of the domain are those for a linear elastic response FIG. 5. Illustration of forcing a box-shaped geometry to a circular
of a solid material to an encompassing boundary load. geometry with purely geometric distinguishing conditions. Note the need

for the second DC to fix a point on the boundary and remove the degener-The idea is to force a spatially discretized box region (with
acy associated with any rotation of the pseudo-solid within the circle.sides of length 1/Ï2) into a circle of unit diameter with

a purely normal traction (compressive or tensile), pre-
scribed according to the description in Section 3.3. The
distinguishing condition applied to the entire exterior described in Section 3.3 is shown in Fig. 5. Three Newton
boundary of the original box-shaped configuration is iterations were required to attain a converged solution.

Interestingly, the corners of the box are mapped without
any difficulty, although unacceptably distorted elements

rDC,circle(x, y) 5 0, (x, y) [ G,
(31)

result. Note the change in overall area of the computational
domain from 0.50 for the box to 0.785 for the circle. It was

5 x2 1 y2 2 1.
also necessary to pin one point of the original boundary
to lie at a specific location on the circle, in order to make
the solution of the problem unique. That is, a conditionNodes for every element on the exterior boundary must
of the formsatisfy (31); the sensitivity of this DC to the pseudo-solid

displacement (i.e., ­Rd
G /­ud

G) is easily determined using (28)
rDC,pt(x, y) 5 0,

(32)as required. In the actual finite element implementation,
the conditions for the imposed DCs may be generally ap- 5 x 1 Ï2
plied, either in a weak form, such as

forces the lower left corner of the box to coincide with
one of the two points, where conditions (32) and (31) are
simultaneously satisfied. Either solution is acceptable; theE

G
w(d)

i rDC,circle Js ds 5 0,
one that is actually chosen depends upon the convergence
history of the Newton iteration process.

In fact, this need to remove rotational freedom of the
where Js represents the elemental Jacobian for the transfor- pseudo-solid applies in all cases: somewhere in the domain
mation from a fixed unit element edge to an element with at least one point must be uniquely specified by the applied
an edge that is a distinguished FB, or in a strong statement boundary conditions on the pseudo-solid in order to elimi-
representing a collocation at nodes or Gauss points (i.e., nate the multiplicity of solutions for all possible rotations
(31) is enforced for each node point on the boundary). of the pseudo-solid. This necessary specification occurs

Example global Jacobian entries for the DC represented naturally in problems with intersection or junction points,
by (31) can be constructed by differentiation, as is the case for all the remaining examples. This simple

example, however, lacks such a point because the one
distinguishing condition describes a globally smooth
boundary.­rDC,circle,i

­dx, j
5 2xdijw

(d)
j ,

5.2. Solidification­rDC,circle,i

­dy, j
5 2ydijw

(d)
j .

In some cases, conditions which distinguish the location
of the boundary make no direct reference to the current
position or velocity of the interface. In this case the implicit
approach is a breakthrough, as this example makes clear.The result of applying this DC with the rotation technique
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Figure 7 shows an example of solving a free-boundary
melting problem in a cube for the position of the two
interfaces separating three phases; such a problem might
arise in the studies of alloy solidification with a liquidus
and solidus isotherm to be identified. Using the dimensions
of the cube as a length scale, the steady heat equation (15)
is solved without convection or heat source terms, but with
the equations for the pseudo-solid. The top of the cube-
shaped domain is set to a dimensionless temperature of
1.1, and the bottom to zero. Heat is drawn off the remaining
sides with a heat transfer model,

n ? q 5 h(T 2 T0 ), (35)

where the heat transfer coefficient h 5 2 and the reference
temperature T0 5 0. These conditions comprise all of the

FIG. 6. Simple solidification of a melt at an interface is a representa-
tive FB and MB problem. Two distinguishing conditions constrain interfa-
cial behavior: (i) the temperature must be continuous; (ii) the heat fluxes
in the two phases are balanced by any latent heat generation at the in-
terface.

Consider a solidification interface between a melt and a
solid region of a pure material (see Fig. 6). The tempera-
ture in the melt and the solid is continuous across the
interface, and a local statement of the conservation of
energy balances the heat fluxes in the two regions with the
latent heat generation occurring at the interface due to
solidification or melting. Thus,

T 5 Tmp , (33)

n ? qu(s) 2 n ? qu(m) 5 r(s)=H 0
f n ? (v 2 vs ). (34)

Here, Tmp is the melting point temperature; the subscripts
s and m denote quantities for solid and melt phase, respec-
tively; DH 0

f is the latent heat of fusion; and vs is the velocity
of the melt surface. In this instance, the heat flux balance
expressed by (34) includes the normal velocity of the un-
known interface and thus provides a ‘‘lever,’’ so that the
position of the interface may be updated using this equa-
tion. For steady solidification problems, i.e., vs 5 0 and
n ? v 5 0, or for problems without latent heat effects, no
explicit relationship between the position or velocity of
the boundary and the internal field variable, T, exists, and
(34) no longer provides a direct mechanism for updating

FIG. 7. Three-dimensional melting/solidification problem in a unitthe boundary position. Moving boundary problems with no
box: (a) Equally spaced isotherms between T 5 0 and T 5 1.1. Hereexplicit relation between the boundary position or velocity
h 5 0.2, T0 5 0, and all phases have thermal conductivity k 5 1. Bold

and the internal field variables have been termed implicit lines are contours placed at T 5 0.3 and T 5 0.6. (b) Undeformed
FB problems [9] and are excellent candidates for a full mesh. Bold lines indicate free surfaces to be determined using DCs. (c)

Deformed mesh with T 5 0.3 and T 5 0.6 as distinguishing conditions.Newton iteration approach.
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conventional boundary conditions applied to the energy
equation in the computational domain.

The mesh used for this simulation is unstructured in a
plane and then extruded in the third dimension. In this
instance, the lack of structure is gratuitous and was selected
only to illustrate the freedom of the technique from grid
structure requirements.

The distinguishing conditions on the pseudo-solid consist
of two kinds: geometric and thermal. Geometric con-
straints describing the cube faces are represented as planar
surfaces of the form

rDC,plane,m 5 0,
(36)

5 am x 1 bm y 1 cmz 1 dm ,

where the subscript m denotes the external faces of the
cube. In addition, thermal distinguishing conditions are

FIG. 8. Newton iteration history for melting problem. The L2 norm
used to determine the positions of two internal phase of the residual vector R and the solution update vector u for the three-
boundaries, dimensional melting problem. Quadratic convergence is evident.

rDC,isotherm,n 5 0,
(37) for the second step are shown in Fig. 8. The convergence

5 T 2 Tmp,n , behavior is clearly quadratic.
The reason the full-Newton approach works for these

problems is that an implicit relation still exists; i.e., there
where the n subscript identifies each of the two phase is some sensitivity of the distinguishing condition to some
transition temperatures. Equations (37) drive one phase unknown in the problem, such as a field variable like tem-
boundary to conform to the T 5 0.3 isosurface and the perature. An implicit relationship, presuming the overall
other to the T 5 0.6 isosurface. Corresponding Jacobian problem is well posed, is sufficient for solving the free
entries for the sensitivity of (37) with respect to tempera- or moving boundary problem. A fully coupled Newton
ture provide the only nonzero contribution in the row: iteration scheme makes the dependence more apparent,

as nontrivial corrections to the interface position unknowns
are determined due to nonzero Jacobian entries coupling­rDC,isotherm,n, i

­Tj
5 w(e)

j . these unknowns with the overall problem.
Moreover, while many moving boundary problems are

governed by parabolic equations, there are many which
are elliptic. These have been termed degenerate by CrankThis is simply the isotherm–Newton technique put forth
[10] and Sackett [9] since the distinguishing conditions forin [6].
the free surface do not contain any explicit reference toA complete solution of the FB problem in this case
boundary position or velocity. The full-Newton approachrequired one continuation step. First, the heat equation
advocated here is suitable for these problems as well.was solved, together with associated external boundary

conditions on fixed boundaries, which is a linear problem.
5.3. Capillary Hydrodynamics

During this first step, no internal DCs were applied, but
only the external geometric DCs that fixed the shape of Continuous liquid film coating processes epitomize FB

and MB problems in capillary hydrodynamics. The exam-the cube. As the second step, the two internal interfaces
were released by applying the isotherm distinguishing con- ple chosen here is a rigorous test of numerical methods

because of several inherent features: boundary shapes that,ditions. The solution of the first problem required but one
Newton iteration because the problem was linear; the solu- through the normal stress balance at fluid interfaces, in-

volve the curvature of the interface; field equations, liketion of the second problem that included both of the ther-
mal DCs expressed in (37) required four Newton iterations. the Navier–Stokes equations, that include both significant

viscous terms as well as nonlinearities due to advectionThe L2 norm of the residual and Newton update vector
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and thermophysical property variation; and parameters, this example, (38) is the distinguishing condition for all
capillary surfaces. Moreover, because this example is asuch as the capillary number, defined as
steady FB problem, the surface remains motionless, vs 5
0. Other parameter ranges can cause steady coating flows

Ca 5
eU
c

,
to become unstable; Ref. [2] discusses these problems in
greater detail. Whichever choice of DC is made, however,
the remaining constraints are used as boundary conditionswhere e is the viscosity, U is a characteristic velocity of
for the boundary value problem posed by the momen-the fluid, and c is the surface tension. Intuitively, Ca ex-
tum equations.presses the relative importance of viscous forces to surface

Figure 9 illustrates a slot coating flow, which is oftentension forces. Values of Ca can cover so large a range
employed to apply thin films to moving substrates in thethat often a change of iteration strategy for explicit solution
manufacture of paper products, adhesive tapes and films,algorithms is required [40]. Regarding the last feature,
and many other industrially relevant films. In this flow,early work [40] on interface updating strategies based on
liquid emerges from a slot-fed die which is placed at mosta decoupled approach indicated that different strategies
a few millimeters from a moving substrate. Two menisciwere required in different ranges of capillary numbers and,
form, one upstream of the die slot, bridging the narrowif the wrong strategy were used in a particular parameter
gap, and one downstream of the slot die, forming the finalrange, then either the convergence would be distressingly
surface of the film. Although this coating configuration canslow or else the problem would not converge at all. New-
be used to deliver materials which cover a wide range inton’s method, coupling all of the unknowns together simul-
viscosity and surface tension [42], a deliberate choice heretaneously, was found to be more robust for all capillary
is of the case for which the representative capillary number,numbers.
Ca 5 O(0.1). Under these circumstances surface tensionA choice of the distinguishing condition can be used to
effects are more important than those of viscosity, but notlocate the free surfaces in this class of problems; whatever
completely dominating.boundary constraints remain after the DC is chosen are

Four continuation steps were required to attain a solu-used as boundary conditions on the momentum equations.
tion under the conditions indicated in Fig. 9. In the firstMost often the kinematic mass constraint is employed
step the Navier–Stokes equations were solved, togetherwhich basically states, in the absence of mass-transfer
with boundary conditions for fixed but perfectly slipperyacross the free boundaries, that the surface be a material
surfaces, so as to attain a velocity field that resembles thesurface, viz.,
desired result. In the second step the upstream meniscus
was released and (38) applied the distinguishing condition,

rDC,kinematic 5 0,
(38)

with 1458 contact angles at the static and dynamic contact
lines (see Fig. 9). These contact angles at the corners of

5 n ? (v 2 vs ),
the domain are also applied as DCs to points in much the
same way as the DCs are for the physics that govern fluid
and solid surfaces. A vacuum pressure was applied to thiswhere vs is the velocity of surface. Here, the more elaborate
meniscus to help stabilize the location of the contact lines.boundary conditions that apply to the case of interphase
In the third step the downstream meniscus was released,transport are not considered, although such conditions can
again employing (38) as a distinguishing condition. Thealso be put into the context of a full-Newton free surface
incoming flow rate was chosen so that the final film thick-algorithm [41].
ness would be close (within 10%) to the slot gap width. AAnother possible choice for a distinguishing condition
final continuation step was used to lower the flow rate,is to use the normal traction component of the normal
giving the result illustrated in the figure. After two or threestress balance,
initial iterations using a relaxed Newton algorithm, all the
steady state continuation steps converged quadratically in

rDC,normal stress 5 0,
(39) four or five full Newton iterations.

Noteworthy in this simulation is the efficacy of the un-5 nn : T 2 2H c,
structured mesh. The mesh in the vicinity of the static
contact line, dynamic contact line, and static separation
line is refined locally in a pointwise manner. It is wellwhere H represents the mean curvature of the surface.

Equation (39) is in fact the only viable choice for a distin- known [43] that the fluid stress grows profusely in these
regions and locally requires greater spatial resolution toguishing condition when there is no flow, i.e., v 5 0 every-

where, thereby making it useful for startup continuation achieve the desired overall accuracy. Where it is desirable,
unstructured grids permit easier transitions to structured,strategies and for problems in capillary hydrostatics. In
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FIG. 9. Slot coating flow with capillary surfaces distinguished with the kinematic boundary condition (38): (a) undeformed mesh; (b) deformed
mesh; and (c) corresponding pattern of streamlines. Physical dimensions of the flow are based on the slot gap distance between the slot die and
the substrate of 0.5 mm. Density r 5 103 kg/m3, viscosity e 5 70 mPa-s, surface tension c 5 65 mN/m, substrate speed U 5 0.133 m/s, and contact
angles of 1458.

efficient space-filling mesh topology in the interior of the The problem examined here is the startup of a dip-
coating process, whereby, after an impulsive start, a sub-domain. This flexibility in meshing, coupled with the full

Newton algorithm, is one of the most powerful means to strate is steadily withdrawn from a liquid bath. A film is
entrained on the substrate and eventually a steady statecompute steady operating states for intermediate ranges

of capillary numbers. is reached at which the film thickness is dictated by a
competition between viscous, gravitational, and surface

5.4. Transient Problem
tension forces. The details of steady dip-coating operations
of advanced materials has been recently reviewed byFor transient problems the relative motion of the real

material and the pseudo-solid, i.e., the mesh, must be ac- Schunk et al. [46]. To simulate the startup of the process
is much more challenging because of the severe change incounted for in the governing equations with additional

terms as discussed in Section 3.2. In fact, the transient domain shape: the domain starts as a simple box and
evolves into a shape with two disparate length scales, thatformulation of the technique developed in this work is in

essence an ALE method [31]: the mesh moves with the of the entrained film thickness and that of the liquid bath.
The use of unstructured grids as advocated by this workmaterial normal to the interface, as dictated by the condi-

tion (38), yet it is adjusted independently of the flow kine- has made this startup problem more amenable to numeri-
cal simulation.matics otherwise. More specifically, the additional term

that arises from the transformation of the governing equa- Figure 10 shows three time planes of a startup simula-
tion. The reservoir is 1 cm in width and 1 cm in depth. Antion into a moving frame of Refs. [33, 44] is equivalent to

the extra term that arises from the time-dependent isopara- inflow is allowed at the lower right of the reservoir. No
inflow rate is specified, as it is a key unknown in the prob-metric mapping in conventional finite-element algorithms

[11, 45]. lem. At the inflow plane, the pressure is taken as constant,
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FIG. 10. Dip coating startup flow at three time planes, with the capillary surface distinguished with the kinematic boundary condition (38).
Illustrated are: (a) undeformed mesh; (b) deformed mesh and pattern of streamlines at time 0.4 s; and (c) deformed mesh and streamlines at
dimensionless time 0.8 s. The physical dimensions of the flow are such that the reservoir width is 1 cm. The liquid density is r 5 103 kg/m3, viscosity
e 5 70 mPa-s, surface tension c 5 10 mN/m, substrate speed U 5 0.01 m/s, and static contact angle qleft 5 908. The gravitational acceleration is
taken as 0.98 m/s2.

with a value determined by the hydrostatic head associated The third time plane corresponds to about 0.8 s, at which
point the element containing the moving contact line haswith the starting depth of the reservoir. The contact angle

on the upper left part of the reservoir was specified to undergone severe distortion. In fact, at this point it is ap-
parent that it would have been best to remesh the deformedbe 908. The moving contact line at the upper right was

unconstrained with no contact angle specified. At that domain before such a large distortion of the corner ele-
ment occurred.point the material velocity field and the contact line speed

were dictated by the no-slip condition on the substrate and A total of 30 (backward Euler) time steps was required
to reach the final time plane at 0.8 s. A variable time-stepthe kinematic condition (38). All the remaining parameters

and properties of this simulation are given in Fig. 10. algorithm was employed which determined the time step,
based on the solution error norm. The initial time step wasThe original topology of the mesh was highly refined

towards the moving contact line (upper right corner of the 1024 s and the final time step size was 1021 s. With regard
to the time-step size control, surface tension effects aredomain). The idea is that elements close to the contact

line will experience the largest distortion, and so an initial governed by boundary curvature, which historically has
been a difficult effect to incorporate into time-dependentdistribution of many small elements in the vicinity will

minimize the local element distortion. The second time numerical schemes for flows of incompressible fluids with
free boundaries [47]. For explicit approaches to updatingplane (Fig. 10b) corresponds to about 0.4 s. At that point,

the mesh still has retained most of its original integrity. the interface shape, the effects of the surface tension intro-
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duce time-step limitations based upon the speed of the represent mesh displacement unknowns and due to the ill-
conditioned matrices that defy most iterative techniquescapillary-gravity waves traveling across the surface. It is

perhaps significant, especially with the low capillary num- and generally submit only to direct elimination. The mem-
ory and CPU requirements for direct elimination areber which characterizes this simulation (Ca of the order

of 0.1) that such a small number of time steps are required. known to be high, even for the sparse matrix structures
resulting from this formulation. Problems with more thanThis evidence attests further to the power of the fully

implicit approach advocated here. 105 total degrees of freedom rapidly become impractical
on current computing hardware.

Future studies will be directed towards an investigation6. CONCLUSIONS
of the choice of constitutive equation used to represent
the mesh behavior. The Lamé coefficients for the linearThis paper presents a novel technique for solving FB

and MB problems. The technique uses a pseudo-solid rep- elastic model have been chosen in an ad hoc manner. A
more formal investigation of the optimal choice for theseresentation of the mesh, where the mesh responds to distin-

guishing conditions on domain boundaries and as a linearly coefficients will be carried out so that they will be tuned to
enhance the robustness of the mesh. In addition, nonlinearelastic solid on the domain interior. A fully coupled New-

ton–Raphson method is used for solving the nonlinear elastic models will be pursued with the hope that larger
deformations of the computational domain can be followedequation set resulting from finite element discretization of

the physics problem and the mesh equations. The power of with a minimum of mesh distortion. This would be a step
forward in the direction of so-called r-adaptivity [48], athis solution method has been demonstrated on problems

from the areas of capillary hydrodynamics and polymer course of investigation whose value and importance is reaf-
firmed by these preliminary results.and metal processing, although its use is not restricted to

these areas. One advantage of the mesh movement algorithm pre-
sented in this paper is that it provides a natural frameworkOne advantage of this mesh movement algorithm is that

it is completely general and can be applied to any numerical for solving problems with fluid/structure interactions,
where the solid is modeled as Lagrangian and the fluid isdiscretization that has a grid, such as finite volume and

spectral methods, as well as the finite element method modeled in an ALE reference frame. Modeling complexity
arises because of the coupling at the boundaries betweenpresented here. In addition, it is the only fully coupled

technique currently available that can take advantage of the fluid and solid domain. Fluid/structure interactions will
be the focus of our long term research efforts.the efficiency of unstructured grids. The use of Newton’s

method with direct matrix elimination has well-known ad-
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